Mesh Refinement Based on the 8-Tetrahedra Longest- Edge Partition
نویسندگان
چکیده
The 8-tetrahedra longest-edge (8T-LE) partition of any tetrahedron is defined in terms of three consecutive edge bisections, the first one performed by the longest-edge. The associated local refinement algorithm can be described in terms of the polyhedron skeleton concept using either a set of precomputed partition patterns or by a simple edgemidpoint tetrahedron bisection procedure. An effective 3D derefinement algorithm can be also simply stated. In this paper we discuss the 8-tetrahedra partition, the refinement algorithm and its properties, including a non-degeneracy fractal property. Empirical experiments show that the 3D partition has analogous behavior to the 2D case in the sense that after the first refinement level, a clear monotonic improvement behavior holds. For some tetrahedra a limited decreasing of the tetrahedron quality can be observed in the first partition due to the introduction of a new face which reflects a local feature size related with the tetrahedron thickness.
منابع مشابه
Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes
Longest edge refinement algorithms were designed to deal with the iterative and local refinement of triangulations for finite element applications. In 3-dimensions the algorithm locally refines a tetredra set Sref and some neighboring tetraedra in each iteration. The new points introduced in the mesh are midpoints of the longest edge of some tetrahedra of either of the input mesh or of some ref...
متن کاملLocal refinement based on the 7-triangle longest-edge partition
The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided...
متن کاملA local refinement algorithm for the longest-edge trisection of triangle meshes
In this paper we present a local refinement algorithm based on the longest-edge trisection of triangles. Local trisection patterns are sed to generate a conforming triangulation, depending on the number of non-conforming nodes per edge presented. We describe he algorithm and provide a study of the efficiency (cost analysis) of the triangulation refinement problem. The algorithm presented, nd it...
متن کاملNon-degeneracy study of the 8-tetrahedra longest-edge partition
In this paper we show empirical evidence on the non-degeneracy property of the tetrahedral meshes obtained by iterative application of the 8-tetrahedra longest-edge (8T-LE) partition. The 8T-LE partition of an initial tetrahedron t yields an infinite sequence of tetrahedral meshes τ 1 = {t}, τ 2 = {t2 i }, τ 3 = {t3 i }, . . . . We give numerical experiments showing that for a standard shape me...
متن کاملMesh quality improvement and other properties in the four-triangles longest-edge partition
The four-triangles longest-edge (4T-LE) partition of a triangle t is obtained by joining the midpoint of the longest edge of t to the opposite vertex and to the midpoints of the two remaining edges. The so-called self-improvement property of the refinement algorithm based on the 4-triangles longest-edge partition is discussed and delimited by studying the number of dissimilar triangles arising ...
متن کامل